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Abstract 

Any wide-angle X-ray scattering (WAXS) peak, rel- 
evant to a powder sample of crystallites with negli- 
gible internal disorder, is the Fourier transform of 
the so-called oriented stick probability function 
(oSPF) of the filled part of the sample, with the stick 
orientated along the reflexion direction. From this 
observation the following consequences are obtained: 
the correlation function used in small-angle X-ray 
scattering (SAXS) is the average of the former oSPF's 
over all possible stick orientations; any peak profile 
asymptotically vanishes as Sr h-2, where Sr is the 
(specific) area of the interphase surface presented by 
the sample along the reflexion direction; oscillatory 
deviations, behaving as &,ll cos (hL)h -2, are present 
only when a subset (having area &,ll) of the interface, 
after having been translated by L along the reflexion 
direction, superposes on itself; the angularity of the 
interphase surface can be measured by a natural 
modification of the Porod integral relation. For 
samples really isotropic, the above quantities should 
not depend on the reflexion direction and thus they 
should be equal to those measured by SAXS experi- 
ments. These results are applied to three ideal 
isotropic powder samples made up, respectively, of 
monodisperse spherical, cubic and cylindrical crystal- 
lites as well as to the analysis of two WAXS peaks 
diffracted by two real samples of zirconia powders. 

I. Introduction 

The aim of this paper is to point out that many of 
the ideas used for analysing the asymptotic behaviour 

* Present address (until October 1990): Laboratoire de Physique 
des Solides, Bfitiment 510, 91405 Orsay CEDEX, France. 

of small-angle X-ray scattered intensities (SAXS) can 
be usefully applied, mutatis mutandis, in the realm 
of wide-angle scattering (WAXS) in order to assess 
the behaviour of the peak intensities in the tail 
regions. Although the practical application of this 
method suffers two serious limitations, i.e. the powder 
samples must be made up of crystallites with negli- 
gible internal disorder and the measured WAXS 
peaks must not fall so close to each other as to make 
the observation of an asymptotic tail region imposs- 
ible, the results of our analysis are interesting for two 
reasons: they allow one to appreciate the geometrical 
implications hidden in the functional forms usually 
assumed in best-fitting observed peaks and to unify 
the procedures used in interpreting small- and wide- 
angle experimental results. 

The plan of the paper is the following. In the next 
section (§ II), the general theoretical expressions on 
which our analysis is based as well as the conditions 
for the samples we shall deal with will be written 
down. In § III, we shall discuss in detail the relation- 
ship between the WAXS peak profiles and the so- 
called oriented stick probability functions (oSPF). 
We also show how to obtain along the way the SAXS 
idealization of a sample. It turns out that the SAXS 
intensity is essentially the 000 WAXS reflexion and 
that the corresponding correlation function is the 
angular average of the aforesaid oSPF's. In this way 
it becomes clear that many of the techniques used for 
analysing SAXS intensities can be applied also to 
WAXS profiles. In § IV, some recent theoretical 
results relating the continuity properties of the deriva- 
tives of the oSPF's to some geometrical features of 
the crystallite boundaries will be recalled, while in 
§ V we show how these continuity properties deter- 
mine the asymptotic behaviour of WAXS profiles. 
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The concluding section (§ VI) illustrates a preliminary 
application to two real samples and summarizes the 
results. In the Appendix, we give a detailed applica- 
tion of the results to the three simplest crystallite 
shapes: spherical, right circular cylindrical and cubic. 

II. General definitions and assumptions 

According to the general theory of X-ray scattering, 
the profiles of the peaks of  the intensity [ - - I (h) ]  of 
the radiation scattered by a powder sample are related 
both to the sizes of the constituent crystallites and to 
the disorder present in the lattices of the latter.* For 
the sake of simplicity we shall confine ourselves 
mainly to samples where disorder effects can be 
neglected. Under  these assumptions, the electronic 
density of a single crystallite can be written as 
(Guinier, 1963) 

Zpce,,(r-rm)Pv.(rm), 
m 

where Pceli(r) is the electronic density of the unit cell 
and the sum is over all the cells whose representative 
points rm fall inside the spatial set Vn filled by the 
crystallite. In fact, the function pv,(r), known as the 
form factor of  the region filled by the crystallite, is 
defined as being equal to one or to zero depending 
on whether the tip of the vector r lies inside or outside 
V,, respectively. [For this reason, according to a more 
widespread definition, pv(r) represents the function 
characteristic of the set V.] In the case of a powder, 
one has crystallites with different orientations and 
with different shapes and /o r  dimensions. To allow 
therh to be distinguished, they will be labelled by 
indices i and j. The latter refers to the orientation, 
while the former refers both to the size and to the 
shape. In this way, the electronic density of a crystal- 
lite powder sample, pe(r), can be written as 

pc(r )=  Z Pcell,j(r--rra,j)Pvj.i(rm,j) • (1) 
m,j,i 

The complication related to the different orientations 
of  the unit cell inside the differently orientated crystal- 
lites has been accounted for by the fact that the 
electronic density of the cell p¢~ud(r) as well as the 
relevant vector positions rmj depend on j, the index 
which labels the angular orientation of the crystal- 

* In this paper we shall refer only to diffraction profiles which 
are the ideally measured ones. In other words, they are the profiles 
obtained from the experimentally measured ones after having 
applied all the corrections related to the finite size of the collimation 
slits, to the lack of monochromaticity of the beam and to unavoid- 
able background effects. [See for instance Delhez, de Keijeser & 
Mittemeijer (1982) and Enzo, Fagherazzi, Benedetti & Polizzi 
(1988).] 

lite.* If one denotes by ~ f~  the rotation which trans- 
forms pce.(r) into pce.3(r), then 

Pcell,j(r) = Pce l l (~ j r )  (2)  

and a similar relation holds true for the vectors a, b, 
c defining the unit cells in the two cases. The ampli- 
tude of the scattered radiation is obtained by Fourier 
transforming (FT) (1) and reads 

A(h) = ~ pceu , j (h )pv j . , ( h -Q*m, j ) /V¢  
m,j,i 

= Y. t;c~,t(~jh)t~v,(~jh-O*)/Vc. (3) 
m,j,i 

In (3), Vc is the volume of the unit cell, the tilde over 
a symbol denotes the FT, Q*  is the vector associated 
with the m reflection in reciprocal space, while Q * j  
refers to the properly rotated reciprocal spaceS" The 
scattered intensity is the square modulus of the ampli- 
tude. Thus, from (3), after assuming that the sum of 
the crossed terms averages to zero, one gets 

i ( h ) = E  I/~ceU(~Jh)[2 
m,j,i Vc I/~v,(~jh- Q*)[ 2 . (4) 

III. Connection with SAXS theory # 

The expression for the small-angle X-ray scattered 
intensity as well as that for the wide-angle X-ray 
profiles follows immediately from the previous 
equation. 

( a ) S A X S  pro f i l e  

In this case, in fact, one has to refer to the reflexion 
m = 0 0 0 ,  i.e. Q* = 0 and h has to be restricted to the 
region 

h < 1r min (a*, b*, ¢*) (5) 

so that it does not trespass on the next reflexion 
regions. In this situation, the sum over j amounts to 
averaging over the orientations of the particles having 
size i. If one assumes that the latter are quite numerous 
and isotropically distributed, the former average can 
be converted into an integral over all the possible 

* For notational simplicity, instead of Vn, ' we simply use V~ i. 
Moreover, Ino & Minami (1979) have cle'arly shown that tl~e 
definition of the electron density, as given by (1), has a certain 
degree of arbitrariness. This, however, can be safely neglected 
when crystallites contain more than, say, four or five unit cells per 
edge. On the contrary, for smaller crystallites, one expects that the 
atoms on the surface do not have their ideal crystalline positions. 
Consequently, neglecting disorder effects would appear to be a 
limitation more serious than the former ambiguity. 

t Note that our Q*'s are 2w times the standard ones, i.e. Q *  = 
2~r(ha*+kb*+le*) ,  where a*, b*, e* are the standard vectors 
defining the reciprocal-space unit cell. [See, e.g., Guinier (1963), 
page 86, equation (4.11).] 
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orientations of h and one obtains 

, v~ It;v'(h~3)l= 
/2 

= IP~e"(h°3°) 12 I do3 ~ (X,)l~v,(ho3)l 2, (6) 

where (N~) is the average number of the ith kind of 
particle per unit solid angle. In obtaining the last 
equality we have used the second theorem of the 
average for the integrals and thus 33o denotes the 
appropriate point. However, since h obeys condition 
(5) and /~¢~,(h) is a slowly varying function in that 
region, one can reasonably put /~¢~l,(ho3o)-----/~c~.(0). 
This quantity is proportional to the number of elec- 
trons present in the unit cell (=N~,) and thus the 
factor in front of the last integral in (6) can be reason- 
ably approximated by 

i/~,(ha3o)/V~12=(eN~,/V~)2= ~2, (7) 

where a represents the average electronic density of 
the filled part of the sample and e is the electron 
charge. The characteristic function of the total filled 
up region VFl is given by 

pvF~(r)=~..pv,.j(r), (8) 
,j 

and.the SAXS electronic density is 

n(r) = apvF,(r). (9) 

Then it is easy to check that the standard SAXS 
definition of the intensity 

IsA(h) =lff(h)[2--- (47r) -1 ~ do3lr~(ho3)l z (10) 
O 

coincides with our previous expressions, e.g. (6) com- 
bined with (7). From (9), (10) can be written as the 
three-dimensional FT 

IsA(h)=fi2VF, ~g3dvexp(ih.r)7(r) (11) 

of the so-called correlation function of the sample 

3,(r)--4~rVFl do3 dv~ PVF,(r~+ro3)pvF,(rl). (12) 
12 R 3 

We have shown how and when (9) follows from (1) 
and given the conditions required for (10) to be 
equivalent to (4) around the 000 reflexion and this 
yields clearly a more unified presentation of the 
WAXS and SAXS theoretical formulations. The gen- 
eralization required for dealing with samples, which 
require more than two phases from the point of view 
of a SAXS idealization, is trivially obtained by assum- 
ing that one has two or more different unit cells. 

Finally, one should also note that the hypothesis on 
the absence of disorder effects or, equivalently, on 
the assumed existence of well defined and replicated 
unit cells can be considerably weakened since the 
crucial approximations are the validity of (7) and that 
the ambiguity in drawing particle boundaries [see Ino 
& Minami (1979) and Ciccafiello, Goodisman & 
Brumberger (1988)] can be neglected. These remarks 
should also clarify why SAXS idealizations are poss- 
ible and indeed quite useful in the case of biological 
liquid solutions and, more generally, of amorphous 
systems. 

( b ) WAXS profiles 
We turn now to the derivation of the expression of 

the peak profile relevant to a reflexion, labelled r and 
different from the 000 one. [See Guinier (1963), pp. 
126-140.] At this point the assumption that crystal- 
lites, on average, are sufficiently large that Pv, (h) can 
be considered different from zero only when h < 
7r min (a*, b*, c*) plays a very important role. This 
implies that the light spots around the points of 
the reciprocal-space lattice are quite small. Con- 
sequently, the sum over all possible orientations j of 
the crystallites, required in (4), becomes equivalent 
to integration over the sets of those directions which 
ensure that h lies inside the spots which are around 
the considered reflexion and around the reflexions 
which can be obtained by rotations of the latter. The 
smallness of the spots allows us: (i) to approximate 
these sets by planar ones; (ii) to use the decomposi- 
tion ~ih  = h± + Q* + hll.~Or , where Sot is the unit vector 
specifying the direction of the reflexion Q*,  h±. Sot = 
0 and hll = (~ ,h ) .  Sot- Q* ; and (iii) to put/~el,(~jh) --" 
/~ce.(Q*). In this way, the powder profile around the 
rth Bragg reflexion will be 

lwA:(h) = ~' .  /~c~,,(Q*) Q*Vc ('Ni:) 

x f dEh±]/~v,(h± + h~0~,)l 2 (13) 

where we have substituted the standard symbol h for 
hll and (N~,~) denotes the appropriate average number 
density of particles. The prime on the summation 
symbol reminds us that we have to sum over all the 
orientations Sot' of the reciprocal-lattice vectors Q*,  
such that Q*--  Q*. Thus, the sum corresponds to an 
angular average, necessary in order to make the 
integral on the right-hand side of (13) independent 
of the choice of a particular orientation for particles 
having size i, implicitly assumed through the presence 
of V~ on the fight-hand side of (13). In order to make 
the latter property more evident, one can substitute 
the sum over j for the primed sum and write 

,. hso~)[ , (14) /WA, r(h) = ~ ~ ~ d2h±l~v j(h± + " 2 
i , j  
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where c¢ is an appropriate normalization factor, to 
be specified later. If  we recall once more the assump- 
tion that the sum of the crossed terms averages to 
zero, it is straightforward to convert (14) into 

where 

(20 

IWA,,(h)=CaVF~ ~ exp(iht)y,(t)dt, (15) 
- -00  

%(t)=- V~ ~ ~R3dV~pv~(rl+t~o,)PvF,(r~). (16) 

Equations (15) and (11), with the related definitions 
(16) and (12), are the starting point of the following 
discussion. On the one hand, they show that the SAXS 
correlation function (12) is the angular average of 
the oSPF's (16) evaluated with respect to all possible 
directions (S0r). Clearly, if the isotropy is realized 
exactly, %(t) does not depend on the chosen direction 
§o, and then %(t) is independent of r and equal to 
y(t). On the other hand, the WAXS and SAXS 
profiles differ only because the first is a one- 
dimensional FT while the second is a three- 
dimensional one. We stress that this is the difference 
responsible for the different asymptotic behaviour of 
the two profiles, as will be clear later. One should 
also note that the difference has arisen from the 
peculiar position of the 000 reflexion. In fact, while 
for the reflexions with r ~ 0 it has been possible to 
convert the angular average infinitesimal measure dto 
into the planar one dh±/ .2 Q, , for reflexion 000 this is 
clearly impossible. Using now the rotation invariance 
of y(r) as well as the parity properties of %(0 ,  one 
can write (11) and (15) as 

oo 

Isg(h)=(4crVFl~E/h) ~ tT(t) sin(ht)dt (17) 
0 

oo 

Iwg, r(h)=EC~VFl ~ %(t) cos(ht)dt. (18) 
o 

Therefore, when the isotropy holds true, they are 
related through 

Isg(h)=-(2¢rfl2/C~h) d[Iwg.r(h)]/dh (18a) 

and are different FT's of the same function, which 
can be obtained by using one of the following 
expressions 

cO 

5'(t)=(Tr/4tzrH2VFl) ~ hIsg(h) sin (ht) dh (19) 
0 

oo 

%(t)=(Tr/4C~VFl) ~ Iwg,,(h) cos(ht)dh, (20) 
0 

obtained by inverting integral transforms (17) and 
(18). Thus, in the case of exact isotropy, from (18a) 
any peak profile has to be a non-increasing h function 
and from (19) and (20) one could determine, at least 
in principle, T(t) by using only the measurements 
around one reflexion. In practice, things go differ- 

ently and then, assuming that (19) and (20) are still 
valid, one can obtain quantitative information on 
anisotropies present in the sample. To this aim it is 
important to know: 

(i) how geometrical features of crystallite boun- 
daries, also referred to as the interphase boundary of 
the sample, determine the continuity properties as 
well as the values, at particular points, of the deriva- 
tive of the oSPF's; 

(ii) how the aforesaid properties can be obtained 
directly from observed peak profiles. 

This task represents essentially the adaptation of 
well known SAXS techniques to the analysis of 
WAXS profiles. It will be performed by analysing 
point (i) in the next section and point (ii) in § V. 

IV. Properties of y,(t) 

Recalling that we are considering powder samples, 
let us call 1 the phase inside the sample crystallites 
and 2 the void one. Comparing (16) with the oSPF 
~1,1(t~0,), defined by (II.8) in the paper by Ciccariello 
(1985), which will be referred to as I, one concludes 
tha t  

%(t) = ~.~(t~or). (21) 

In this way the continuity properties of %(t) and of 
its derivatives will be those worked out in I for the 
oSPF's. Therefore, we shall recall the main results of 
I, illustrating them with some examples. 

From definition (16) it is evident that %(t) is an 
even continuous non-negative function which 
becomes identically equal to zero as t becomes larger 
than the maximal extension of the sample in the 
direction ~o, and thus the finiteness of the sample 
makes the support of yr(t) compact. 

( a ) First-order derivative 
From (16) and (21) one sees that ~/r(t), the first- 

order derivatives of %(t), can be obtained acting with 
the differential operator §0r. V on ~l,l(r) and then by 
putting r =  t~0r. According to (I-III.3),  the former 
derivative is equal to the projection along s0, of that 
part of the interphase boundary which lies inside the 
filled region of the sample, once the latter have been 
shifted by r. Moreover, the discussion reported in 
§ IV-1 of I has shown that; 

(a) the first-order derivative of ~ , l ( r ) ,  evaluated 
along a particular direction ~, can have only finite 
discontinuities; 

(b) these are present only for those r values such 
that the outset interphase surface and the r-translated 
one superimpose at least in part; 

(c) the value of the discontinuity is equal to the 
difference of the areas of the projections of the two 
surfaces which superpose as the limiting configur- 
ation is reached from the left or from the right. [See 
(I-IV.7).] 
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From this result immediately follows that the first- 
order derivative of any oSPF has a finite discontinuity 
at r = 0 .  In fact, one finds that the limit of 
(~. V)~ , l (~ r ) ,  as r-->0 +, is equal to 

[~.  ~(r)] dS. 
~(-) 

[Here ~(r) is the unit vector orthogonal at r to the 
surface of the particle and pointing outwardly to the 
latter, while X <-) denotes the subset of the interphase 
boundary where the integrand is negative. In fact, 
owing to the previous orientation of ~(r), only that 
subset contributes since, as r--> 0 ÷, it lies inside the 
particles.] On the contrary, the limit of (~. V)~l . l (~r)  
as r--> 0- is just the opposite. Therefore, combining 
these results, one concludes that 

31'(0 +) = --~gr ~ --~ Si, r/ VFI, (22) 
i 

where the sum is performed over all the particles and 
Si, r, defined as 

S,,r= ~ [§0r. ~(r)] dS (23) 
z~-) 

is equal to half the area of the unfolded projection 
of the surface of particle i on a plane orthogonal to 
~0r. Note that in order to evaluate the area we have 
to unfold the projection and that y'r(0) is a negative 
quantity. Moreover, in the isotropic case, one can 
apply the argument proposed by Debye, Anderson & 
Brumberger (1957) and prove that 

• ~Z~ r = ST~4 VF,, (23a) 

where ST is the area of the total interphase surface. 
If one assumes that particles have a strictly convex* 

shape and one recalls the assumption that overlapping 
of different particles, after sample translations, can 
be neglected, then one can show that y'r(t) is non- 
positive (non-negative) for any positive (negative)t.  
In fact, under these assumptions, the expression of 
the oSPF 

yr(t) = 7 ( M - l t l )  dcrM/VF~ (24) 
Itl 

reported by Guinier (1963, p. 134) is correct. In (24), 
dtrM is the area of the infinitesimal basis of the 
cylinder, having length M and the bases on the par- 
ticle boundary, parallel to ~0r and fully contained 
inside the particle. Clearly, only when the former 
hypotheses are fulfilled, does integral (24) yield cor- 
rectly the oSPF expression. Taking the first-order 
derivative of (24), one gets 

oo 

3"(t) = - s ign  (t) ~ dtrM/VFI. (25) 
Itl 

* We recall that  a part icle is convex when any segment,  having 
its ends on the part icle boundary ,  lies complete ly  inside the particle. 
Examples of non-convex particles are innumerable, for instance 
L-shaped particles, hollow spheres, tori etc. 

The positiveness of dtrM ensures the validity of the 
aforesaid statement. In the Appendix we illustrate 
these results, discussing in detail the three simplest 
examples of crystallites, namely the spherical, the 
right circular cylindrical and the cubic ones. 

( b ) Second-order derivative 

We shall now discuss the properties of y'r'(t), i.e. 
the second-order derivative of the oSPF. 

When the conditions required for the validity of 
(24) are fulfilled, taking the derivative of (24) and 
putting dt~M = g ( M )  d M  one gets 

77(t) = g(ltl). (26) 

This shows that, under the previous assumptions, 
y"( t )  is a non-negative quantity, since g ( M )  is non- 
negative. 

We recall that according to the discussion reported 
in § III.2 of I, based on assumptions more general 
than the ones required just above, y"( t)  is given by 
the integral of a suitable function along the curve 
resulting from the intersection of the outset sample 
interface with the one resulting from the shift of the 
sample by t-~0r. [See equation (I-III.4).] Stemming 
from this expression, it has been shown that the 
second-order derivative, besides the 8-like sin- 
gularities arising from the finite discontinuities 
pointed out above, is discontinuous at those t values 
where one of the following two conditions takes 
place: 

(i) one of the sharp edges, eventually present on 
the particles' surface, superimposes (at least in part) 
on the surface resulting from the translation by t.~'or ; 

(ii) the translated surface is tangent at some point 
of the original surface and the tangent plane is 
orthogonal to the translation direction. In this case 
it can happen that the two surfaces, in the neighbour- 
hood of the contact point, have in common only this 
point, or that they intersect each other along two lines 
meeting at that point or, finally, that they touch each 
other along one line. In the three cases one speaks m 
respectively of elliptic, hyperbolic and parabolic con- 
tact point. 

The general expressions of the discontinuities rel- 
evant to cases (i) and (ii) are given essentially by 
equations (I-B.5) and (I-A.16), provided one puts 
12 = ~ = & = §or and r = t§o, In fact, taking properly 
into accout all the factors, in the first case one finds 

VF,['y~( t + ) -  TT( t-)] 

=--f {I(~°SOr)s~n~t'SOr)l+--I...l - } 
F 

dl. (27) 

The integral is performed along that part F of the 
edge which superposes on the particle boundary once 
the latter have been translated by r~or, ~ and ~ '  are 
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the normal  to the initial and to the translated surface 
which meet along the considered edge, while/3, with 
0 </3 < 7r, is the dihedral  angle between the two sur- 
faces at the edge point  parameter ized by the cur- 
vilinear coordinate / .  Finally, the upper  indices + and 
- account  for the fact that  the quantit ies inside square 
brackets generally change as we approach  the limit 
from the right or from the left, respectively.* 

In the second case and for elliptical contact  points 
one finds 

VF,[ ~/"( t +) -- 3~7( t - ) ]  = 2rr sign ( F)(d" .  d-') ~(b'/2(t).  

(28) 

Here ~G(t) is the Gauss ian  curvature (Ciccariello, 
1989) of the surface obtained by considering the 
distance of  the two meeting surfaces along straight 
lines parallel  to ~0r or, equivalently,  to the line 
or thogonal  to the surfaces at the contact  point. 
Moreover,  sign (F)  denotes the sign of  the difference 
surface in a sufficiently small ne ighbourhood of  the 
contact  point.  Therefore,  it is positive or negative 
depending on whether  the t ranslated surface falls 
externally or internally to the original surface in the 
ne ighbourhood  of  the contact  point . t  

Before closing this section we think it worthwhile 
to discuss briefly another  important  geometrical  par- 
ameter  of samples,  the angularity. This quant i ty  
roughly speaking measures the number  of  edges pres- 
ent on the sample interface. It was first in t roduced 
by Porod (1965) and measured by Tchoubar  & M6ring 
(1969). Subsequently,  it has been thoroughly  dis- 
cussed and used for analysing the behaviour  of 
some catalysts by Ciccariello & Benedetti (1985). 
Mathematical ly ,  the angular i ty  can be defined as the 
yT(0 +) value, i.e. as the limiting value of  yT(t) as 
t ~  0 ÷. Indeed,  starting from equat ion ( I - I I I .11)  with 
i= j  = 1, i~ = ~ = So~ and r = t~o~ and using equations 
(I-A.2) and (I-B.4), one finds that  in the case of  an 
edge yT(0+) is given by (I-B.5), which is an integral 
of  a known function along the edge. Similarly, the 
contr ibut ion of  a contact  point  to yT(0 ÷) can be 
obtained from equat ion (I-A.15). Finally the proof :  
that  yT(0 ÷) = 0 in the case of a smooth surface, i.e. a 
surface such that  at each of  its points a uniquely 
oriented tangent  plane exists, can be easily obtained 
noting that  the intersection of  this regular surface 
with its image translated by t§0~ tends, as t~  0 *, to 
an extremal curve, i.e. a curve such that at each of  

* In equation (I-B.5) this fact was accounted for by the charac- 
teristic set function Pn(&). 

t In passing we note that for hyperbolic and parabolic contact 
points (28) cannot be applied and this is clearly signalled by the 
fact that it becomes meaningless, since ~(o(r) is negative or null 
in the two cases. These singular behaviours indicate that, in the 
asymptotic expansion of the intensity, we have to expect contribu- 
tions which, albeit decreasing as h -3, have an oscillatory factor 
different from the sine function or contributions which decrease 
as h -a, with 2 < a < 3 (Jones & Kline, 1958). 

its points the unit  vector @~, or thogonal  to the surface 
on which the curve lies, is also or thogonal  to the 
translat ion direction, i.e. ~.~o~=0. These results 
clarify t h e r e a s o n  why one refers to the y"(0+) value 
as to the angulari ty of the sample. Finally we ment ion 
that  using the aforesaid results one can show that  the 
angulari ty value is always non-negative.* 

V. Asymptotic analysis 

The former quantities,  at least in principle,  can be 
measured starting from the measured peak profile. 

The pari ty of  % ( 0  allows one to write (15) as 
L 

Iwg, r(h)/2= ~ cos (ht)%(t) dt, (29) 
o 

where L denotes the right extremum of the suppor t  
of  % ( 0 .  An integration by parts yields 

p Lm 

Iwg.~(h)/2=-- ~ J [sin(ht)/h]y'r(t)dt 
m = !  I m 

L 

- -~[s in(ht ) /h]y '~( t )d t ,  (29a) 
0 

where the initial integration interval [0, L] is broken 
into p intervals, [lr,,, L,,], m = 1 , . . .  ,p,  in order  to 
guarantee the continuity of  the integrand inside each 
of  them. In this way, l~=0,  Lp=L, l,,,=L,,_l, 
y'~(/+~) ~ y'~(L~,_~), m = 2 , . . . ,  p - 1 and the aforesaid 
prescription for the evaluation of  integrals is made  
evident by the slash on the integral symbol as in (29a).  
Integrating once more by parts, one gets 

P 

Iwg.r(h)/2=- ~. [cos(hL,,)/h2]y',a(L,,) 
m = 0  

L 

-~[cos(ht)/h2]y",(t)dt.  (30) 
0 

Here, according to the following definition, 

' l , , + l ) - y ~ ( L , , ) ,  m = 0 , . . . , p .  (31) 7~,a(Lm) -= y'~( + , - 

Y'a(Lm) denotes the discontinuity value at the mth 
discontinuity point. This definition applies to the 
cases m = 0  and m = p  by using the definitions 
7'~(I~-+ ~) - 0 and 7'r(Lo) - 0 natural ly suggested by' the 
support  propert ies of %(t) .  Recalling the result (22) 
and that  the integral on the r.h.s, of (30) decreases 
faster than h -2, one concludes that the leading 
asymptot ic  term of a single peak profile is 

2Se~ p cos(hL,,,)  , L 
Ir.asym(h)=--~ - - 2  ~, h 2 Y~.a( , , ) .  (32) 

m = l  

This expression looks similar to the leading 

* More details on the way the angularity is related to the aforesaid 
geometrical features can be found in Ciccariello & Benedetti (1985) 
for the SAXS case, while in the Appendix we illustrate how the 
angularity works in some WAXS cases. 
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asymptotic term of the SAXS intensity. Some differen- 
ces, however, are worth noting. In the latter case, in 
fact, the decrease is O(h -4) (we are concerned with 
pin-hole geometry) and, moreover, the coefficients in 
front of the oscillatory terms are related to the discon- 
tinuities of the second-order derivative. Besides, 
oscillatory contributions proportional to the sine 
functions are expected when the discontinuities arise 
from hyperbolic contact points (Ciccariello, 1989). 
However, these differences can be considered as 
secondary ones, since they do not prevent the applica- 
tion of the general SAXS technique of analysis, which 
allows one to measure the aforesaid geometrical 
parameters stemming from the measured intensity. 
Multiplying by h 2 the observed peak profile, ac- 
cording to (32), at large h one should observe 
some wiggles, represented by the contribution 
2 P ,,,=, cos (hL,,)yr, a(L,,), around the straight 
horizontal line, at height 25er, in the [h, h2Iwg, r(h)] 
plane. In principle, this procedure allows one to 
measure the surface offered by the crystallite along 
the view direction @0r, the fraction of the crystallite 
surfaces which are parallel as well as, through the 
frequency factor related to Lm, their relative distances. 
Of course this procedure works only when sample 
particles are to a good approximation monodisperse 
and have a shape sufficiently simple that only one or 
two oscillatory terms are required on the right-hand 
side of (32). On theoretical grounds, however, (32) 
is interesting because it shows that peak profiles 
asymptotically* decrease as h -z. We recall that 
Allegra (1982) has already obtained this result, using 
however the so-called sampling-line method and 
rather general particle distribution. On the contrary, 
our derivation uses the property that any oSPF has 
a finite discontinuity at t = 0 in consequence of the 
fact that crystallites have sharply defined boundaries, 
which is our only strong assumption.t Clearly this 
assumption is implicitly present in the sampling-line 
method, used by Allegra, so it is likely that the rest 
of his assumptions are equivalent to the assumed 
existence of a finite 5er value. 

Once we have achieved by the previous analysis 
an accurate determination of the leading asymptotic 

tt + term of lwg.r(h), it is also possible to measure Vr(0 ), 
i.e. the angularity presented by the particle along the 
direction Sot. In fact, subtracting from the peak profile 
its asymptotic leading term and multiplying by h 2 one 

* For a thorough discussion on the asymptotic condition as well 
as on its meaning we refer to Ciccariello, Goodisman & Brumberger 
(1988). 

t We note that having neglected, in the calculation of yr(t), the 
overlapping among different particles does not modify (22), since 
at very small t's overlapping of each particle with itself is the 
dominant effect. Possible exceptions, however, could be expected 
when the fractal dimension (Bale & Schmidt, 1984) of the sample 
interface is larger than two. In these cases 5e turns out to be 
divergent and the profile should decrease as h-" with a < 2. 

is left on the r.h.s, of (30) with a cosine transform, 
which can be immediately inverted. One finds 

yT(t)=(1/Tr) 2if ' r -2  Y~ cos(hLm)y'.a(L,,) 
0 m = l  

-h2Iwg#(h)] cos (ht) dh. (33) 

The t +  0 + limit of (33) gives 

Y"(O+)=(1/ 'n ' )~[  2 5 e r - 2 o  ,,,=~ ~" cos(hLm)'Y~r'a(Lm) 

-h2Iwg, r(h)] dh. (34) 

If one forgets for a moment the oscillatory contribu- 
tions, the r.h.s, of (34) represents the algebraic value 
of the area delimited by the Porod plateau (i.e. the 
horizontal line 25e,), and by the properly scaled 
intensity curve, i.e. hEiwA.r(h). Thus,  quite similarly 
to the result first obtained by Porod (1965), the angu- 
larity of the particle along the direction @or is propor- 
tional to the aforesaid area. From this point of view, 
(34) represents the generalization of Porod's result 
appropriate to WAXS profiles. Moreover, it shows 
also how the Porod sum rule has to be formulated 
when oscillatory contributions are present. For later 
convenience, in order to study how quickly the exact 
angularity value can be obtained from the integral on 
the right-hand side of (34) it is convenient to intro- 
duce the quantity 

r r (x ) - (1 /~ )  25er-2 Z Cos(hLm) ' "/r,a(L.,) 
0 m = l  

-h2IwA.r(h)] dh, (35a) 

which represents the value of the former integral 
truncated at h = X. Then one has 

yT(0+) = lim Fr(X). (35b) 
X --+oo 

VI. Concluding remarks 

in our analysis we have emphasized the relation exist- 
ing between oSPF's and peak profiles [see (15) and 
(16)] and pointed out the possibility of performing 
a SAXS-like analysis around WAXS peaks. 

An immediate consequence of the first point is that 
parameterizations of peak profiles must involve func- 
tions decreasing as h -2. This implies that their FT's 
must have a discontinuous derivative at t = 0. Recall- 
ing that in the direct space the Lorentzian and the 
Voigt functions have respectively the following 
expressions: exp (-celt l) and exp ( - c e l t l - ~ t  2) (Del- 
hez et al., 1982; Enzo et al., 1988), one immediately 
realizes that in the reciprocal space they have the 
correct asymptotic behaviour, while this does not 
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happen for the Gaussian parameterization: 
exp (-fit2). 

The natural question is whether it is really possible 
to measure quantities, usually obtained by SAXS 
intensities, using WAXS peaks. Obviously, the possi- 
bility is related to the peak separation. Indeed, when 
a peak is sufficiently well separated, the analysis is 
possible. Before concluding the paper we would like 
to sketch the results we have obtained by analysing 
the WAXS intensities diffracted by two powder 
samples of metastable cubic zirconia illustrated in the 
paper by Benedetti, Fagherazzi, Pinna & Polizzi 
(1990), to which we refer for the physical characteriz- 
ation of the samples. We have analysed the peaks 111 
and 200, present in the two diffractograms shown at 
the bottom of Fig. 2 of that paper and relevant to 
the samples A~ and A2 of the previous authors (see 
their Table 2). Their broadening and their angular 
positions in fact are, respectively, large and low 
enough that one can reasonably neglect instrumental 
aberrations.* 

The best-fit analysis has been performed using for 
the intensity the expression reported on the right- 
hand side of (32), confining ourselves to the case of 
a single oscillatory contribution. Besides, similarly to 
the SAXS case (Luzzati, Witz & Nicolaieff, 1961), we 
have added to this expression a constant contribution 
~,  to account for background effects and for possible 
deviations from the idealization discussed in § III, 
particularly that related to the assumption of a con- 
stant Pcel~ value throughout the explored h range. For 
each peak, six different optimization runs have been 
performed. In fact, we have considered three different 
asymptotic h sets: -0.12-< h_<-0.06, 0 .06_ h _  
0.12 A -1 and their union. In each of these sets we 
made two optimization runs. In the first, we assumed 
that no oscillation was present and thus we used as 
free parameters only Set and ~,  while in the second 
we used four parameters: SPr, ~ ,  L and 7 'a(L) .  Each 
peak profile has been normalized requiring that 

c o  

Iwa.r( h ) dh = 2"a" 
- - c o  

since yr(0) = 1. 
In all cases we have found that no oscillatory 

contribution is required since the y'A(L)'s have 
turned out quite small, while significant values for ~r 
and Mr = y"(0 ÷) have been obtained. (Their units are 
A-1 and ,~-2, respectively.) Moreover, 6¢r appeared 
rather insensitive both to the parameterization used 
and on the chosen h interval. In Table 1 we report 
the reciprocal of the value obtained by averaging the 

* I am par t icular ly  grateful  to Professor  G. Fagherazzi  for  his 
suggest ion o f  ana lys ing  these peaks  and  for  having kindly suppl ied  
the exper imen ta l  data.  

Table 1. The results of the best fits of the 111 and 200 
peaks scattered by the samples A1 and A2 of zirconia 

powders, analysed by Benedetti et al. (1990) 

5P -l M 

At (111) 38+2 0"9±0.4 245+25 
(200) 40 ± 2 1.0 ± 0.5 257 + 50 

(111) 64+6 0-3±0-1 212+20 
A2 (200) 56±4 0.4±0.2 205±30 

In columns 3, 4 and 5 are reported the reciprocal specific surface (,~), the 
angularity (/~-2) and the subtracted background. The values are the averages 
of the ones resulting from the six best-fit runs (see § VI). Similarly, in each 
of the reported cases the error is the largest difference of best-fit results from 
the average value. Finally, the SAXS average particle sizes obtained by 
Benedetti et al. (1990) with the Fedorova & Schmidt (1978) method are 7-1 
and 15.1 nm for samples A t and A2, respectively. 

ones relevant to the different runs. The reported error 
has been simply identified with the largest (absolute 
value) difference. The angularity Mr does not look so 
stable, as one can see from the value of the corre- 
sponding error shown in the table. For each sample, 
one sees that, apart from a few %, 5e~ -1 is independent 
of r, as one would expect when the powder sample 
is really isotropic. The independence of Mr on r is 
verified with an error of - 30% for sample A2. Recall- 
ing that the angularity is a parameter much more 
difficult to measure, we would conclude that the 
isotropy is well verified. Comparing now the results 
relevant to the two samples, one sees that the average 
dimension of A2 is larger than that of A1 by a factor 
--- 1.5. Also, the angularity of the latter sample is larger 
than that of the former. If one assumes that the 
dihedral angles among particle faces are constant, the 
previous result can be intuitively justified noting that 
the total length of the edges will be longer when a 
given volume is filled with smaller particles. Since 
the quantities , ~ F r = S r / 4 V F I  differ by an unknown 
numerical factor from the corresponding quantities 
obtained from SAXS intensities by the Fedorova & 
Schmidt (1978) method, from the comparison of our 
results with the corresponding ones reported by 
Benedetti et al. (1990) in their Table 2, we can only 
say that the two pictures look rather similar. In par- 
ticular, the ratio of their SAXS values (---2) is rather 
close to ours (--1.5). Thus, one can conclude that it 
is possible to measure some quantities, usually deter- 
mined by SAXS experiments, by analysing the tail of 
a well separated WAXS peak. 

Stimulating and clarifying discussions with Pro- 
fessor G. Fagherazzi and with Drs S. Polizzi and M. 
Battagliarin as well as useful correspondence with Dr 
A. Benedetti are gratefully acknowledged. Financial 
support from the Italian Ministry of University and 
Scientific Research through 40% funds is gratefully 
acknowledged too. 
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APPENDIX 

( a ) Spherical particle 

Stemming from definition (16) it is simple to 
evaluate the oSPF relevant to a spherical particle of 
diameter D. In fact the volume shared by the particle 
and the one translated by t~o~, whatever S0r, is V[1 - 
3[ tI/2D + I tI3/2D3], where V denotes the volume of 
the sphere. Thus, one gets 

Ysph(t)  = 1-3l t l /2O+l t l3 /ED 3 Itl < - O 

= 0  Itl>-D. (A.1) 

According to our general discussion, since the sphere 
does not have finite subsets which are parallel, 7'sph(t) 
has to be continuous except at t = 0. According to 
(22), in order to obtain the value o f  7~ph(0 +) we need 
to know the area of the surface Sr offered by the 
sphere when it is observed along a particular direc- 
tion. This value is simply "rrD2/4. Thus, 

I + 
7sph(0 ) = - z r V 2 / 4 V = - 3 / 2 D  (A.2) 

as one can easily check by taking the derivative 
of (A.1). 

The second-order derivative of ~/sph(t) will have a 
discontinuity only at t = D, since the sphere has no 
edges and the contact condition takes place only when 
the sphere is shifted by D. Besides, the contact is 
elliptical and thus the discontinuity is finite.* On the 
other hand, the smoothness of the surface guarantees 
that ~/stph(0 +) is null. By explicit calculations, starting 
from (A.1), one finds 

tt + 
'~sph(0 ) = 0  ( A . 3 )  

7"ph(D+)-7"ph(V- )=-3 /D  2. (A.4) 

From (32) we deduce that the leading asymptotic 
term of the peak profile will be S~/Vh 2. This result 
can be immediately checked evaluating the peak 
profile by Fourier transforming (A.1). One gets 

IWA,sph (h) = 2SJ  Vh2 - [ 6 D / ( h D )  3] 

x {sin (hD) - [ 1 - cos (hD) ]/hD}. 

(A.5) 

From (A.5), it is easy to check, b~ a simple integration 
by parts of the second term, that the corresponding 
integral on the r.h.s, of (34) is equal to zero, as (A.3) 
predicts. Finally, Fig. 1 shows the Porod plateau and 
allows one to get a rough estimate of the lowest limit 
of the asymptotic region. This in fact appears to lie 
beyond the value hD ~-217". 

* In fact, choosing the z axis along ~o~, the difference surface 
between the two tangent spheres with their centres at (0, 0, 0) and 
(0, 0, D) is F(x, y) = D - 2 ( D 2 / 4 - x 2 - y 2 )  t/2. Thus, around the 
contact point s i g n ( F ) = l ,  the Gauss curvature is 16 /D 2 and 
~r. ~ r ' = - 1 .  From (28) the value of  the discontinuity at t = D will 
be 7s"ph,a(D) = - 3 / D  2. 

( b ) Right circular cylindrical particle 

As will appear clear from the following discussion, 
the case of  the cylindrical particle is deeper than the 
preceding one. The correlation function in fact 
depends on the observation direction ~or. We have 
found it convenient to choose the reference system 
with the z axis along the cylinder axis and the origin 
at the centre of the lower base of the cylinder. The 
latter's height, diameter and volume are denoted by 
H, D and V. We shall denote by 0 the angle formed 
by Sot with the z axis. The symmetry of the particle 
around the z axis will make y~,cy~(t, 0), the oSPF of 
the cylinder, dependent only on t and 0. The latter 
in particular will vary in the interval [0, zr]. In order 
to evaluate y~,¢y~(t, 0), we note that the cylinder trans- 
lated by t]o~ and the outset cylinder in general will 
share a right cylinder having height equal to H -  
It cos 01 and base equal to the set common to two 
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Fig. 1. The continuous line shows the peak profile IwA,sph(h), 
given by equation (A.5) relevant to a sphere with diameter D, 
while the dashed curve represents its wide-angle Porod plot, i.e. 
the plot of the function q2/'Wg.sph(h), with q ---- hD. The horizontal 
dashed-dotted line is the plot of q2lr, asym(h) which, from 
equations (32) and (A.5), reduces to the constant value 2SrD2/V. 
One should note how the dashed curve approaches the latter as 
h increases. The double-dotted dashed line represents the func- 
tion Fr, sph(q) obtained from evaluating numerically the function 
defined by (35a). One sees that as q increases Fr, sph(q) 
approaches zero, although very slowly. Therefore the angularity, 
particularly in the case of a null value, is a quantity rather 
difficult to evaluate. In fact, setting the border of the asymptotic 
region at q =2~r, the relative error on the specific surface is 
smaller than 20%, while the absolute error on the angularity can 
be considerably larger. Note that, throughout the figures, the 

O m a x  units for the vertical left and right scales are respectively -2 
and D . . . .  and that Dmax denotes the length of the longest stick 
which has the reflexion orientation and lies completely inside 
the particle. However, for the peak profile, a further scale factor 
must be considered. In this case it is 0.75D/4.82.  
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circles with diameter D with their centres set apart 
by a distance x = It[ sin 0. The area of this set is given 
by 2(D/2)26e(Itlsin O/D) (Miller & Schmidt, 1962) 
with 5e(x) defined as 

5e(x) = arccos X--X(1--X2) 1/2. (A.6) 

Then the oSPF required is 

f (2/17")(1 - I t  cos 0l /H)~(I t l  sin 0 /D)  

~/r,=y,(t, 0 ) = ~  if0--<ltl <-omax 

[ 0  elsewhere, (A.7) 

where 

Omax ~ min (D/s in  0, H/Icos 01). (A.7a) 

The continuity of ~/r, eyl(t, 0)  is evident. Besides, 
"Yr, eyl(t, 0)  is symmetric with respect to the exchanges 
0 ~-~ 7r - 0 and t ~-~- t. For this reason, in order to 
simplify the notation, from now on the variables will 
be confined to the region 0 -  0 -  7r/2, t-> 0. 

In order to find ' + yr,¢y~(0,0), according to (22) 
we need to know the area of the cross section of 
the cylinder along the direction ,~o~. This is clearly 
DH sin O+zr(D/2) 2 cos 0 and thus 

! + 
y~,cy~(0 , 0) = -[DH sin 0+  zr(D/2) 2 cos 0]/V. 

(A.8) 

Since for some translations the cylinder boundary 
superposes partly on itself, we have to expect finite 
discontinuities in y'cy~(t, 0). The translations respon- 
sible for this phenomenon are the ones yielding a 
partial superposition of the bases. Therefore, they are 
characterized by the condition 

tcosO=H and O<-Oo=-arctan(D/H). (A.9) 

The latter constraint in (A.9) is necessary because 
only the values of t slightly smaller than H sin 0 yield 
a finite intersection volume. The discontinuity value, 
according to the result of I (see § III.1), will be 
proportional to the difference of the projections of 
the areas which superpose as the limiting configur- 
ations are reached from the right and from the left, 
respectively. In our case, the limit from the right is 
zero, while the limit from the left is the area shared 
by two circles with their centres at a relative distance 
t sin 0, i.e. 2(D/2)26e(t sin 0). Thus, the expected dis- 
continuity is 

~/~,eyl.a ( H / cos t9, O) 

=2(D/2)2Sf[(H/D)tan O]cos O/V, 0<-0o. 
(A.10) 

On the contrary, when 0 >- 00 no discontinuity exists. 
In this case, in fact, the possible tangency of the 
cylinders takes place only along a segment. The 

explicit derivation of (A.7) gives 

.yir, cyl(t,O)={O(2/Tr)~fl(t,O) w h e n  0<--/<-- Dmax 

elsewhere, 

(A.11) 

where 

y - sin O/D 
6el(t, 0)--= {cos OSf(ty)/H (A.11a) 

+ 2( 1 - t cos 0 / H ) y[ 1 - ( ty)211/2}. 

From this expression it is simple to check the validity 
of (A.9) and (A.10). 

We turn now to the analysis of the second-order 
derivative. Since the cylinder has (two circular) sharp 
edges, the limit of Y~cyl(t, 0), as t ~ 0  + is different 
from zero and we have generally to expect an angular- 
ity different from zero.* Moreover, "y~¢y~(t, 0) will be 
discontinuous for those t values such that the corre- 
sponding translations yield edges lying partly on the 
cylinder surface or a tangency condition at points 
where the touching surfaces are smooth. The first 
condition is realized when condition (A.9) is fulfilled. 
In this case we have a finite discontinuity.t The 
second condition is realized when the tangency takes 
place along one of the cylinder generatrices, i.e. when 

t s i n 0 = D  and O>-Oo-arctan(D/H ). (A.12) 

In this case the contacts are parabolic and the discon- 
tinuity is a divergence. By explicit calculations one 
finds that 

"YT'eyl(t' 0)={~ 4sinO/zrD)fP2(t'O) w h e n 0 -  t-< DmaXelsewhere, 

(A.13) 

* From (27) it is rather easy to evaluate the limit value. As t --> 0 +, 
one sees that the top basis of  the fixed cylinder cuts the lateral 
surface of the translated cylinder along an arc, which approaches 
a half-circumference. Similarly, the bottom basis of the translated 
cylinder cuts the lateral surface of the fixed cylinder along an arc 
which, neglecting its different altitude, is opposite to the former 
one. In both cases the dihedral angle is 13 = ~-/2, and the product 
of  the scalar products, although each factor changes its sign, is 
equal to - cos  0 sin 0 cos ~p. ~p denotes the angle between the normal 
to the lateral surface of the cylinder at a point on the edge and 
the projection of So, on the plane of the basis. The y axis has been 
chosen along this direction, thus the integral along the top half- 
circumference will correspond to ~'s in the interval [ -z r /2 ,  7r/2]. 
The integral is immediately performed and one finds that each 
half-circumference contributes 2 [D/2  sin 0 cos O/(zrHD2/4)]. In 
this way, one finds that y~(0 +) = 2D sin 0 cos O/(1rHD2/4). [See 
(A.14).] 

¢ The calculation of the discontinuity can be done along the 
same lines expounded in the preceding footnote. One has simply 
to note that the limiting top half-circumference is now the arc of 
the translated basis internal to the fixed top basis. Accordingly, 
will now range in the interval [ -a rccos  (x/D), arccos (x/D)], 
having denoted by x = t sin 0 the distance between the centres of 
the two upper bases. Performing the integral with respect to ~ and 
noting that the overlapping limiting edges exist only when one 
considers the limit from below, one gets y~a(H/cosO)= 

2 - 2 D  sin [ar cos (H tan O/D)] sin 0 cos O/(zrHD/4) [see (A.15).]. 
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where y is defined by the first of (A.11a) and 

~2(t, 0)----- {(2 cos O / H ) [ 1 - ( t y ) 2 ]  '/2 

+ ty2(1 - t cos 0 / H ) / [  1 - ( ty)2]'/2}. 

(A.13a) 
From (A.13) one can immediately see that 

11 / ,,x-4- 
Yr, eyltU , 0)  = 2D sin 0 cos 0/V. (A.14) 

Consequently, the angularity is different from zero 
when the edges are completely seen, i.e. 0 # O, ,rr and 
0 # rr/2. Similarly, when condition (A.9) is obeyed, 
the finite discontinuity is 

T~cyl A ( H / c o s  0, 0)  = - - [8  sin 0 cos O/TrHD] 

x [ 1 - ( H  tan O/D)2] ~/2. 

(a.15) 
By contrast, when 

t s i n O = D  and O > - O o - a r c t a n ( D / H ) ,  (A.16) 

from (A.15) one sees that the discontinuity is a diver- 
gent one. Moreover, for positive t's, the negativeness 
of Y'xyl(t, 0) as well as the positiveness of Y~.¢ys(t, 0), 

following from the convexity of the particle, appear 
evident from (A.11) and (A.13).* 

Unfortunately, the evaluation of the peak profile, 
through the Fourier transform of (A.7), is not possible 
in a closed explicit form and must be done in a 
numerical way. We have considered the case H~ D = 1 
and Figs. 2(a),  (b) illustrate the results for the angles 
0 = "n'/3 and 0 = "n'/6. 

( c ) Cubic particle 

This case does not offer new insights and thus it 
will be discussed very briefly. After having chosen 
the origin at one of the cube vertex and the axes along 
the edges coming out from the latter, let (s~, s2, s3) 
and SM denote respectively the three components of 
§0, and the maximum of the latter absolute values, 
i.e. sM = m a x  (Is,I, Is~l, Is~l). The origin of the cube 
translated by tlo, will have coordinates (ts~, ts2, tS3). 

* It is not difficult to show that in the case of a hollow cylinder, 
whose radii are R~ and R2, the second derivative of the oSPF, 
with the stick oriented along one of the cylinder diameters, becomes 
negatively divergent as t ~ (Ri + R2)-. 

" ~ 1  1 ~ ~ . . ~  -~ "-" 

.<,;b \ / \ 4 i . 
, t \ I \ l i \ \  I ' \  ] %" ~'P \ ;  ~' " \ \  _1! \\. i/ '.k "J " 

oL ;I ° 
":t ;I \ " 4 "~ 

~0. ~.o ~.0 tO. 'ri. ~.o 

q -  h-D(max) q -= h-Olmax) 

(a) (b) 

Fig. 2. The meaning of the curves is as in Fig. 1 but the panicle is a right circular cylinder having height equal to the diameter D and 
thus, from (A.9), 0 o = rr/4. Two different angular orientations (= 0) of the cylinder axis with respect to the reflexion direction are 
considered. (a) 0=  ,-r/3. In this case, 0 >  0 o, Dmax=2D/31/2 (see equation A.7) and from equation (A.11) one knows that the 
first-order derivative of the cGrr¢lation function is continuous and thus the leading asymptotic term will not oscillate. In this way, 
similarly to the case of the sphere, we have a horizontal Porod plateau (the dotted-dashed line) while the Porod plot of the intensity 
(the broken curve) shows oscillations of decreasing amplitude around this line. Since the cylinder has sharp edges visible along the 
considered reflexion direction, the angularity is non null, as one can see from (A.14). The double-dotted dashed curve shows that 
the exact value of the angularity, 1.103, is approached more quickly than in the former case. (b) 0 = 7r/6 and Dma x = 2D/31/2. Since 
0 < 00, we have a discontinuous first-order derivative of ~/r(t). The discontinuity value is given by (A.10). Then, from (32), the leading 
asymptotic term, once it has been multiplied by q2, will be the sum of a constant and of an oscillatory term. Once more this contribution 
is represented by the dotted-dashed curve. From the figure it also appears clear how the plot of q2lwA,rxyl(h), i.e. the dashed line, 
becomes closer to the former curve. As in (a), the double-dotted dashed curve shows a rather fast approach to the exact angularity 

value (1.103). 
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With L denoting the edge length, the overlapping 
• 3 volume will be rli=i (L- I t s i l )  and the oSPF of the 

cube is {~ (1 - l t s ' /L[ )  whenl t l<-L/sM 
)',,cub( t, -So,) = , 

elsewhere, (A.17) 

where 

L/sM--  Dmax--min (L/[sll, L/Is=l, g/Is31). (A.lga)  

From the geometry of the cube and from (22) one 
deduces that 

I + ^ r,.ou (0, So,) = - t=(Is i I  + Is=l + Is l)/t 3 
3 

= - E Is, I/L. (A.18) 
i=1 

Moreover, for any So,, the derivative of the oSPF has 
a finite discontinuity at L/SM. For this t value, in 
fact, we have a partial superposition of that pair of 
the cube faces whose unit normal is closer to So,.* 
The discontinuity is 

3 

"Ytr, cub, ,a(L/SM,~3Or)=(SM/L) I-I' (1--1S, I / sM) ,  ( A . 1 9 )  
i= l  

where the prime on the product symbol means that 

* By closer we mean that the absolute value of their scalar 
product is closer to one than for the remaining two pairs of  faces. 

we have to neglect the index value which yields a 
null factor. 

Turning to the second-order derivative we have 
both a non-null angularity and a finite discontinuity. 
One finds in fact that 

3 
l/ / r , +  ^ ~/r, cub(U ,SOr) = 2  X Is ,s j l /L  = ( A . 2 0 )  

i<j= 1 

t t  I* 

Y ,,cub,a ( L / s M , SOr ) 

=--2(sM/L2){IS, I(1--1Sjl/SM)+i'--'j}, (A.21) 

where i # j  # M and i,j, N e {1, 2, 3}. The peak profile 
can be straightforwardly evaluated and one finds 

Iwg,cub(h, §0r) 

2 L f A  cosq s inq  l - c o s  q} 
--SM [q2 + B - - - q ~ - 2 C - - q 3 - - - 6 D  q4 

, I  

(A.22) 

with 

q =- hL/sM, A = 1 + E, 

B = = - - I + E - D ,  C = E - 2 D ,  (A.23) 

D=-Is,s lls#, E =-(Is, l+lsjl)ls,,,,. 
To check (32) and (34) is rather simple. For the latter 
in particular it is convenitent to integrate by parts the 
contribution due to the last term in (A.22) and then 

oo 
one has to recall that ~o x-1 sin x dx--zr /2 .  Fig. 3 
shows the peak profile and allows one to see that, as 
in the other cases, the onset of the asymptotic regime 
takes place, roughly, at q = 27r. 

" \ . ' Z \  " 
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q -  h Dlmax) 

Fig. 3. The curves, with the same meaning as in Figs. 1 and 2, are 
relevant to a cube having edges of length L and oriented along 
the axes. The reflexion orientation is characterized by the follow- 
ing polar angles: longitude q~ = ~-/3, latitude 0 = zr/6. In this 
case Dma x = 2L/3 t/2 and the angularity is 1.40. 

References 

ALLEGRA, G. (1982). Acta Cryst. A38, 863-868. 
BALE, H. D. & SCHMIDT, P. W. (1984). Phys. Rev. Lett. 53, 596-599. 
BENEDETTI, A., FAGHERAZZI, G., PINNA, F. & POLIZZI, S. 

(1990). J. Mater. Sci. In the press. 
CICCARIELLO, S. (1985). Acta Cryst. A41, 560-568. 
CICCARIELLO, S. (1989). Acta Cryst. A45, 86-99. 
CICCARIELLO, S. & BENEDETTI, A. (1985). J. AppL Cryst. 18, 

219-229. 
CICCARIELLO, S., GOODISMAN, J. & BRUMBERGER, n .  (1988). 

J. Appl. Cryst. 21, 117-128. 
DEBYE, P., ANDERSON, H. R. & BRUMBERGER, H. (1957). J. 

Appl. Phys. 28, 679-683. 
DELHEZ, R., DE KEIJESER, TH. H. & MIT'FEMEIJER, E. J. (1982). 

Z. Anal. Chem. 312, 1-16. 
ENZO, S., FAGHERAZZI, G., BENEDE'I'TI, A. & POLIZZI, S. (1988). 

J. Appl. Cryst. 21, 536-542. 
FEDOROVA, i. S. & SCHMIDT, P. W. (1978). J. Appl. Cryst. 11, 

405-411. 
GUINIER, A. (1963). X-ray Diffraction. San Francisco: Freeman. 
INO, T. & MINAMI, N. (1979). Acta Cryst. A35, 163-170. 
JONES, D. S. & KLINE, M. (1958). J. Math. Phys. (Cambridge, 

Mass.), 37, 1-28. 
LUZZATI, V., WITZ, J. & NICOLAIEFF, A. (1961). J. Mol. BioL 3, 

367-378. 
MILLER, A. & SCHMIDT, P. W. (1962). J. Math. Phys. (NY) ,  3, 

92-96. 
POROD, G. (1965). Small-Angle X-ray Scattering, edited by H. 

BRUMBERGER, pp. 1-16. New York: Wiley. 
TCHOUBAR, D. & MITRING, G. (1969). J. AppL Cryst. 2, 128-139. 


